3.147 \(\int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=85 \[ \frac{(A-B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-3 B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

[Out]

-(((A - 3*B)*EllipticE[(c + d*x)/2, 2])/(a*d)) + ((A - B)*EllipticF[(c + d*x)/2, 2])/(a*d) + ((A - B)*Sqrt[Cos
[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.149822, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {2977, 2748, 2641, 2639} \[ \frac{(A-B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-3 B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x]),x]

[Out]

-(((A - 3*B)*EllipticE[(c + d*x)/2, 2])/(a*d)) + ((A - B)*EllipticF[(c + d*x)/2, 2])/(a*d) + ((A - B)*Sqrt[Cos
[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx &=\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int \frac{\frac{1}{2} a (A-B)-\frac{1}{2} a (A-3 B) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac{(A-3 B) \int \sqrt{\cos (c+d x)} \, dx}{2 a}+\frac{(A-B) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a}\\ &=-\frac{(A-3 B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(A-B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [C]  time = 6.4083, size = 1098, normalized size = 12.92 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x]),x]

[Out]

((-I/4)*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)
*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x
)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1
+ E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(
2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] +
 I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*Cos[c
 + d*x]) + (((3*I)/4)*B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7
/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Si
n[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos
[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[
c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d
*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c]))
)/(a + a*Cos[c + d*x]) + (Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*((-2*(-A + B + 2*B*Cos[c])*Csc[c])/d + (2*Se
c[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/d))/(a + a*Cos[c + d*x]) - (A*Cos[c/2 + (d*x)/2]^
2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]
]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Si
n[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) + (B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Hyper
geometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d
*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[C
ot[c]]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2])

________________________________________________________________________________________

Maple [A]  time = 3.473, size = 244, normalized size = 2.9 \begin{align*} -{\frac{1}{da}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( A{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +A{\it EllipticE} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -B{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -3\,B{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) + \left ( 2\,A-2\,B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+ \left ( -A+B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a),x)

[Out]

-((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-
B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B)*sin(1/2*d*x+1/2*c
)^4+(-A+B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin
(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*cos(d*x+c)**(1/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a), x)